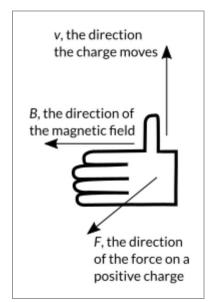
Lorentz Force: Magnetism and Charged Particles (SwiftStudy Printable)


Key Formula

$$F = qvBsin\theta$$

F	force	newtons (N)
q	charge	coulombs (C)
υ	velocity	m/s
В	magnetic field strength	tesla (T)
θ	angle between velocity and magnetic field vectors	degrees or radians

Tips to Remember

- When the velocity and the magnetic field are perpendicular, e.g., a proton moves north in a westbound magnetic field, then the angle θ between them is 90°. Since $\sin(90^\circ) = 1$, the Lorentz formula then simplifies to F = qvB.
- If the particle is moving in the same direction as the magnetic field, then θ is zero, and there is no force at all since $\sin(0) = 0$. The same is true if the particles are moving in exactly opposite directions, since $\sin(180^\circ)$ is also 0.
- Often problems about the Lorentz force will refer to forces on specific particles such as protons. In this case, you will need to know that the charge on a proton is 1.6×10^{-19} C.
- ▶ If you need to know the direction of the Lorentz force, use the right hand rule. Hold your **right** hand with its palm outstretched. Point your thumb in the direction the charge is moving, and point your fingers in the direction of the magnetic field. The force on a **positive** charge will be in the direction outward from your palm, while the force on a negative charge would be the opposite direction. (Another version of this rule uses the thumb for *F*, the index finger for *v*, and the middle finger for *B*. Both versions produce the same results.)

Learning physics? Teaching physics? Check out www.gigaphysics.com.